• СОЛНЕЧНЫЕ СКИДКИ НА ЗНАНИЯ!

    Оригинальный адрес - Infobiza.Info / infobiza.top остерегайтесь Сайты-клоны мошенников!

    Получите вечный Премиум доступ к более чем 190 000 курсов + приватный раздел за 600  450 рублей

    Премиум MAX + Guard.ws + Elements.Envato + доступ к удалённым курсам и книгам 1000  850 рублей

    Акция действует до 30 Сентября включительно!

    Оформить подписку Подробнее
  • Мы опубликовали новых материалов за сутки 95 за неделю 661

Программирование [Stepik Academy] Математика для Data Science (2021)

Smoky
Редактор
45,473
408,590
Автор: Stepik Academy
Название: Математика для Data Science (2021)

1635956431883.png

Описание:

Разберитесь, как работают технологии машинного обучения, и научитесь пользоваться ими осознанно.

1. Разобраться в теории

Вы любите доходить до самой сути всего, что делаете. Вам интересно, что стоит за теми алгоритмами, которые вы применяете.
2. Подготовиться к собеседованию
Вы хотите работать в сфере Data Science и боитесь каверзных вопросов на собеседованиях? Не зря боитесь.
3. Читать научные статьи
Статьи по Data Science часто несложные по сути – но без определенной математической базы их сложно читать.
4. Полюбить математику
Мы любим математику и хотим показать вам, как она красива.

Блок 1 - Математический анализ


Модуль 1 - Одномерный математический анализ

  • Зачем в машинном обучении нужен математический анализ
  • Множества и функции
  • Пределы последовательностей
  • Пределы функций и непрерывные функции
  • Производные
  • Одномерный градиентный спуск
Модуль 2 - Многомерный математический анализ
  • R^n: расстояния и векторы
  • Дифференциал и частные производные
  • Производная по направлению и градиент
  • Градиентный спуск
  • Модификации градиентного спуска (Momentum, RMSProp, Adam)
Блок 2 - Линейная алгебра


Модуль 1 - Линейная алгебра

  • Векторные пространства и линейные отображения
  • Матрицы
  • Нейронные сети
  • Подпространства, базис, размерность
  • Ранг матрицы и метод Гаусса
Модуль 2 - Линейная алгебра продолжение
  • Определитель, обратные матрицы, замена базиса
  • Скалярное произведение, углы, расстояния
  • Ортогональные матрицы
  • Матричные разложения
  • Собственные векторы и SVD
  • Backpropagation
Блок 3 - Теория вероятностей


Модуль 1 - Дискретная теория вероятностей

  • Вероятностное пространство, события, исходы
  • Равновероятные исходы
  • Условная вероятность, независимые события, теорема Байеса
  • Перестановки и биномиальные коэффициенты
  • Дискретная случайная величина, распределение, математическое ожидание, дисперсия
  • Ряды и счётное пространство исходов
Модуль 2 - Непрерывная теория вероятностей
  • Интеграл и непрерывное пространство исходов.
  • Непрерывная случайная величина, распределение, плотность распределения, математическое ожидание, дисперсия
  • Закон больших чисел
  • Центральная предельная теорема
  • Основы статистики: статистические тесты

Подробнее:

Скачать:


 
Сверху